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THE LARGE COEFFICIENT PROBLEM; CAN WE MAKE SENSE OUT OF QCD
PERTURBATION THEORY?'!

Geoffrey B. West

Theoretica! Division, T-8
Los Alamos National Laboratory
MS B28S
Los Alamos, NM 87545

I INTRODUCTION

There is the possibility of an impending crisis looming on the horizon for QCD. The prob-
lem is that in mary processes, large coefficients arise in the perturbation series expansion
lcading to serious uncertainties concerning its predictive power. Until recently most of the
examples of such a phenomenon occurred in the calculation of decay rates. These were,
by and large, either ignored or dismissed using possible scheme-dependence arguments as a
way out. However, more recently a calculation of the 3-loop contribution to the total e*e”
annihilation cross-section was performed which gave an enormous coefficient of the order
of 50 times that of the 2-loop term(!). If correct, this would imply that the 3-loop contribu-
tion actually exceeds that of \he 2-loop! Thus, from a conservative viewpoint, the validity
of the perturbaticn series expansion as an estimate for the total e* e~ cross-section is
called into questios. Such a cautionary attitude should even be extended to the lowest or-
der parton-model result, 3~ Q?; (Q,being the charge of the ith quark species). Since this
process has played a key role in the development and understanding of QCD and since, in
many ways, it is one of the clesnest methods for extracting a, (the conventional QCD firie
structure constant) the pruoblem can no longer be avoided. Furthermore, there is no reason to
donbt (and, in fact, good reasons to believe) that this problem should occur in all physical
processes. Coming to grips with it is, of course, not only important for testing QCD but also
for extracting fundamental quantities such as ar,. Clearly one needs to understand the nature
and origin of such large coefficients before one can confidently continue to use perturbative
estimates. Such problems can be expected to occur universally so, using different methods
to determine a,, for example, will not circumvent the difficulty.

The purposc of this talk is to focus on these probleras. I shall first review the experimental
situation with some examples illustrating the problem. I shall then discuss various general
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components and properties of perturbation theory (such as renormalization and causality)
ocfore attempting to give a possible resolution of the problem.

Everyone is, of course, familiar with perturbation theory as a calculational tool; Feynman
diagrams and their accompanying rules of computation are the stock-in-trade for all particle
physicists, theorists and experimentalists alike. Indeed, the phenomenal success of quantum
electrodynamics is surely one of the crowning achievements of modem physics. Its predic-
tions are in remarkable agreement with experiment, in some cases to one part in 10'2. Cal-
culationally, this success is rooted in perturbation theory which has become the comerstone
for understanding the consequences of any relativistic quantum field theory. In spite of this,
perturbation theory has serious limitations beyond those associated, for example, with such
questions as bound states, or spontaneous symmetry breaking. Already in 1952 Dyson®
had pointed out in an elegant paper that the perturbation szries could not be convergent. The
argument is deceptively simple and very physical: imagine changing a to —a so that like
charges now attract and opposite ones repel. Clearly the ground state of this new theory is
quite different from that of ordinary QED since virtual pairs created in the vacuum now repel
one another. Thus, perturbing around the original "tivial" vacuum of QED will clearly be
insufficient to describe this new situation; the structure of the new theory and, in particu-
lar, of its vacuum cannot, therefore, be obtained by simply setting & = —a in the Feynman
perturbation series. Consequently perturbation theory must be non-analytic in a at o = 0
signifying that the scries has zero radius of convergence. An amusing historical note to this
is that Dyson came to this conclusion(® after haviny first claimed that the series was in fact
convergent and that QED was therefore a closed book!

If the nature of the divergence of the series were such that it were asymptotic then the
situation is, at least in principle, controllable. For, in such a case, as will be reviewed below, a
good estimate for the sum of the series is obtained by keeping “only" the first 7 /a( =~ 400 in
QED) terms. In practce, this means that, since a is so small, perturbation theory will, in fact,
give an accurate estimate; only at absurdly high order do serious deviations begin to develop.
Thus the fact that the series is actually divergent would be of no practical importance. Clearly,
then, the nature of the divergence (i.e. whether, for example, it is asymptotic or not) is a
potentially deep and importart question. It presumably bears upon the question of the self-
consistency of QED and whether it needs to be imbedded in a largcr, possibly asymptotically
free theory.

The second limitation is a practical one and was best expressed by Feynman'® himse!i
in 1959; he was conccmed about developing an approximate algorithm for estimating higher
order terms in the perturbation seriex without having to laboriously (and, to some extent,
mindlessly) calculate Feynman diagrams. Of course, his concem is somewhat less of a prob-
tem these days given the advent of fast computers and sophisticated software, nevertheless,
his remarks are worth repeating. To quote:

"It seems that very little physical intuition has yet been developed in this subject.



In nearly every case we are reduced to computing exactly the coefficient of some
specific term. We have no way to get a general idea of the result to be expected.
To make my view clearer, consider, for example, the anomalous electron mo-
ment, [+(g — 2) = a/2m — 0.328a?/7*]. We have no physical picture by
which we can easily see that the correction is roughly a/2 =, in fact, we do not
even know why the sign is positive (other than by computing it). In another field
we would not be content with the calculation of the second-order term to three
significant figures without enough understanding to get a rational estimate of the
order of magnitude of the third. We have been computing terms like a blind man
exploring a new room, but soon we must develop some concept of this room as
a whole, and to have some general idea of what is contained in it. As a specific
challenge, is there any method of computing the anomalous moment of the elec-
tron which, on first rough approximation, gives a fair approximation of the a
term and a crude one to a?; and when improved, incieases the accuracy of the
a? tenn, yielding a rough estimate to o’ and beyond?"

Although we shall not be able to meet Feynman's cnallenge directly, nevertheless the
techniques discussed here do constitute the beginning of an answer.

Returning to the question at hand, namely QCD rather than QED, we should note that
the difficulties there are exacerbated for at Icast two independent reasons: (i) since a, > a,
the problem of the divergence of the series is much more serious and (ii) there are explicit
non-perturbative phenomena (instantons and the like) associated with new local minima of
the action. The question of the interplay between other minima of the action beyond the
trivial one and ordinary perturbation theory is a subtle one which we shall discuss below.
Regardless, it is clear that the QCD situation is a serious one in that large coefficients can
(and do) occur early in the expansion. In some cases, as reviewed immediaiely oelow, they

occur ridiculously early. Ultimately a methodology based on understanding the nature of the
series must be devised for handling them.

I REVIEW OF SOME EXAMPLES

Before discussing some explicit QCD examples, let us examine QED and use it to briefly
discuss the question of scheme dependence. One of the best known QED series is that for
(8-2) of the eiectron which was quoted above by Feynman; it reads

%—g.- 1+05(a/m) —(’;,328(cm/1r)2 + l,183(a/1r)3 + ... (1)

whic. certainly looks like a well-behaved series. Recall that in deriving this equation a
certain renormalization scheme has been implicitly used; for example, a could be defined



through threshold Thompson scarttering from (on-shell) electrons. It is via such a definition
that we deduce from experiment that o ~ (137.03 - --)~'. This is a natural defirition es-
pecially for low-energy quantities such as g,. One zould, in principle, use other schemes
associated with high energy QED phenomena where the corresponding o would be smaller.
Generally speaking, different schemes are related by some polynomial relationship‘®: o =
a + aja® + aza’ + - - (the a; being constants). Although, the final result for a physical
quantity such as g, does not depend on which scheme is chosen it is clearly not very sensible
to choose one associated with a high energy process when dealing with low energy pherom-
ena. In any case, in QED, since elecirons are observable, there are "natural” schernes such as
via Thompson scattering, which are the most appropriate ones for the definition of a. This
is in contradistinction to QCD where thiere are no analogous "natural” schemes associated
with experiments where quarks or gluons are real observables. Because of asymptotic free-
dom, however, these can be approximated in a variety of high energy experiments such as
the total e* e~ total cross-section measurement. In any case, as already stated, the final result
represented, for example, by the sum of the perturbation series must be scheme invariant. On
the other hand, to a finite order in perturbation theory, the result will, in general, be scheme-
dependent and this is a major source of ambiguity (and confusion). There have been many
attempts to define a "best" scheme appropriate to a particular process, however, none are to-
tally satisfactory and all necessarily leave a residue of uncertainty. I shall not, in this talk, be
much concerned with such problems especially since for any physical process, scheme in-
variant quantities can be defined®:? even in finite orders of perturbation theory. However,
to illustrate the problem suppuse we use a scheme where® of /m = a/n(1 — 10a/7), then
the series (1) reads

%9. =1+05a'/mn)+4.67(a'/m)?+ 94 61(a’'/m)? + ... (2)

which now looks like a baaly behaved series! This means that when dealing with large coef-
ficients some care must be taken to express quantitizs in a scheme-invariant fashion. In this
example, incidentally, (a') ~' as 140 29 comresponding to an "inappropriate” o' defined at
an energy scale significantly greater than the low energy scale of g,.

Before moving onto QCD, it is worth mentioning one other example from QED and that is
the decay of orthopositronium into three protons. The width for this process is given by!®

6

2
M mmemg(r? — 91 = 1035(%) + .. ] 3
9n m

There are several points worth noting about chis; first is the appearance of a large coeffi-
cient in the leading order correction; this receives its dominant contribution from the graph



shown in fig.1 and is large in any reasonable scheme. Note, however, that, because the tree-
graph contribution is ~ a®, this correction is rather sensitive to the scheme. Eq. (3) is one of
the few (and possibly only) cases where the theoretical predictions of QED are in serious dis-
agreement with experiment. In fact, there is a 5-standard deviation discrepancy which could
be explained if the coefficient of the (a/m)? term were of order 300! Scheme dependence
has been evoked to explain this, but it could be a situation where true large coefficients are
occurring. Notice, incidentally, thie occurrence of the curious coefficient (7% — 9); conceiv-
ably the fact that this almost vanishes (presumably accidentally) contributes to the sensitivity
of this process.

Perhaps the first example of a large coefficient occurring in perturbative QCD is in the decay
of the 0~* heavy quark state ng into two gluons'®. Typical graphs are shown in fig. 2. The
calculation yields

oy g (a) [ 24 (5) + ] *

Bound :tates effects have been completely ignored and the initial valence quarks and final
state gluons treated as if free. As in the orthopositronium case, the large coefficient (22.4) is
scheme-dependent since the tree-graph contribution is O(a?).

Ruling out a light higgs has been a frustratingly difficult enterprise mostly because of its very
weak coupling!®. The best limits come from rare K and B decays, the higgs being detected
via its decay into u* s~ pairs. This, therefore, requires accurate knowledge of the branching
ratio into this mode which can lead to serious uncertainties. An elegant way of avoiding this
problem is to use the decay Y — h+ v and to look for a single hard photon in which case, the
decay mode of the higgs is irrelevant'?. At tree level, the decay proceeds via the diagram
shown irfig. 3. Ignoring bound stare effects and treating the system as if it were positronium,
one obtains

r(Y — hy) Grm} ( m,z,) (5

r(Y - u*p-) ~ -\721ro:

In this raiio the crude bound state effects, which would be reflected by the wave-function
at the origin in a non-relativistic loosely bound system, cancel. In such an approximation
my =& 2m,. In addition to inherently non-perturbative bound state correctiows to this formula
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Fig. 1

Dominant contribution to the decay of orthopositronium into three photons

Fig. 2

Typical graphs contributing to the decay of paraquarkonium

Fig. 3

Leading graph in the decay Y ..> h+ ¥



there are the usual QCD perturbative radiative corrections to the sub-process bb — hy. A
calculation of these leads to('V

C(Y — hy) N To(Y — hy) [1—0(%)] (6)

where, for m, € my ,a ~ 13 again showing the appearance ol a largc coefficient. Taken
at face value this formula would rule out ('¥a higgs in the range 200 MeV< m), <6GeV.
However the correction here reduces the tree graph result by ~ 80 % making the calculation
suspect. When uncertainties about possible bound state corrections are folded in, one must
certainly take this conclusion cum grano salis, especially since a conservative attitude is
mandated when dealing with the existence of the higgs! Notice incidentally that unlike the

previous formulae the expansion in eq. (6) begins with (a,)° so that the result should be
scheme-invariant.

This process has dlready been alluded to in the introduction. The total cross-section (R)
for e*e~ annihilation into hadrons relative to that of u* u~ pairs is directly related to the
absorptive part of the polarization tensor defined by

() = i [d'ze**(0[T(5,(2)(0]1/0) 7

= [¢*gu — qua.IN(¢%) (8)

where j,(z) is the electromagnetic current operator: R = 12#lm M. If 4 is an arbitrary
renormalization scale parameter then the perturbative expansion of R reads

R (¢ /6, 0w = (3 QF) 3 (e /) (an/m)". (9
w0

In the M § scheme with 5 flavors, the coefficients have the following ¢V values when ¢2 =
u?|:
G,=031=1;a;=14l and 33 =64 9. (10)

The last of these is truly remarkable. To get some idea of its implications, note that if it is
neglected then a comparison with data at \/q_’ = 34GeV leads to ar, = 0.169 corresponding
to Agcp = 610 MeV. On the other hand, it if is included then a, = 0.150 corresponding
10 Aqcp = 314 M eV, a reduction of 50%. To make this even more dramatic, Fleischer et al
('Y have made a Padé approximant fit to the series. Though this should be taken cum grano



salis it does illustrate just how serious things could become: they find 34 &~ 10* leading
toa, ~ 0.114 and Agep ~ 60 3 MeV andas ~ 1.5 x 10% leading to a, ~ 0.086 and
Agep = 6 .3MeV. Clearly, then, one needs to understand the nature of the series and its
implicit non-perturbative character before one can begin to confidently extract quantities like
a, and ¥ Q? from the data. In a sense one can comnpare this situation with that which existed
in weak interactions prior to unification. At that time the Fermi theory gave an adequate (and
reasonably accurate) description of low energy weak interaction phenomenology in spite of
the fact that it was non-renormalizable so that eventually it would break down. Similarly,
here, one might argue that, because of asymptotic freedom, perturbation theory should give an
adequate estimate at truly infinite energies. However, at finite energies appropriate to present-
day experiment, there are potentially large corrections due to the divergent nature of the
series, even though the theory is renormalizable. Just as one had to wait for the development
of arenormalizable theory of the weak interactions in order to conirol and consistently define
the infinities in each term of the perturbative expansion, so, from a conservative point of view,
one must await a similar procedure for dealing with the complete sum of the series before
being confident that our predictions are consistently meaningful.

Il GENERAL PRINCIPLES, DEFINITIONS AND TECHNIQUES

Perturbation theory can be thought of as being generated by an expansion of the path integral
around local minima of the action [ S, say, where6S/8A, |-, = C]. Symbolically, then,
M can be thought of as having the following representation:

N(g?, g°) ~ 5 Ama(gt)eS™/5 (g?)n = (11)

m,n=(

where g is the usual gauge coupling (o, = g /4 7) and the dependence on 4 has been sup-
pressed. The series with m = 0 defines ordinary perturbation theory as represented by the
usual sum of Feynman graphs. The mult-instanton sectors and so forth, which are topolog-
ically separated from ordinary perturbation theory, are represented by the m # 0 series. As
generated directly from the path integral, the expansion (11) is very sick: each coefficient
Anmn(g?) is divergent as is each series summed over n. The first of these problems is con-
ventionally dealt with via some renormalization scheme (and, if necessary, by some infrared
¢ t-off) whereas the second disease is typically ignored. The challenge is to find a consistent
scheme to control the divergence implicit in the sums. To attack this problem, I shall need to
review some general propertics of series expansior.s with emphasis on asymptotic expansion.
However, before doing so I want o remind the reader of the constraints on 1 rendered by



renormalizability and causality. The point is that the latter dictates general analytic properties
as a function of ¢ whereas the former tells us that g> and g? are not, in fact, independent

variables. Thus, the general dependence on, and analytic structure, in g2 is, in some sense,
known.

Because j, is a composite operator there is an additional divergence above the usual multi-
plicative ones needed to renormalize QCD that must be cancelled to render the theory finite.
This is the single ¢ intermediate state which gives a logarithmically divergent contribution
to I even in free field theory. On the other hand j,, being a conserved current, has no anoma-
lous dimension. The renormalization group equation resulting from the invariance of I to
changes in the scale 4 therefore reads (neglecting quark masses)'

2

0 o
[u53+ﬂ(g)a-g]n [ﬁ;.az(u)] = I[g*(w)] (12)

The presence of I reflects the composite nature of j,. Now, the general solution to this
equation can be expressed as follows14):

2 2
n (‘L, ,g’) =F [%e“‘"’] + ¢(g") (13)
I’ )
where
K(gz) = /'m-;)- (14)
and ¢(9%) = f'dg"é%g,l), (15)

{* being an arbitrary function.
in perturbation theory
B(g) ~ =g (by + bag® + - ) (16)

leading to

1 bz 2 1 bz r'} ]
ay ——— |1 —_ —_— =
K(g) Zblgz[ +b|gl"(g2+b;>+o(g )J (17)



Now, both R and D = (¢%8/3¢*)11 satisfy the homogeneous equation and so depend only
on the single variable z = (¢?/u?)e2¥®, Thus, for such quantities, g> — oo is equivalent
to g2 — 0* This, of course, is just the asymptotic freedom connection, namely that the
asymptotic g% behavior of R is deriveable from its small g> behavior and so, can presumably
be systematically calculated via perturbation theory.

Conversely, it is clear that the small ¢ behavior is equivalent to g2 — 0~. Thus, if
perturbation theory [i.e. eq. (9)] were convergent, so that D or R were analytic in g2 at
g? = 0, then one would have proven a remarkable theorem (!9, namely, that their infra-red
and ultra-violet behaviors had to be identical! Put slightly differently one could state this as
saying that the difference between the IR and UV behaviors reflects the lack of analyticity at
g? = 0. Indeed, if one knew the precise nacure of the singularity at g> = 0 then ore would
know the IR behavior of the theory! Thus the problem of the large coefficients in QCD is
presumably linked to the problem of its IR behavior.

It is well-known that causality implies that IT be an analytic function of ¢> for complex g¢?
except for possible singularities along the positive real axis. This is normally expressed via
a dispersion relation. Now, asymptotic freedom dictates that for ¢> — oo |11 ~ In g2
thereby requiring (at least) one subtraction!!¥). This subtraction in the dispersion relation is,
in fact, intimately related to the extra subtraction needed to renormalize IT and, consequently,
to the inhomogeneity in the renormalization group equation. Using this it is easy to write a
dispersion representation for D:

g?
o)

2 A A
9 an-' dq 9 2 ‘
12 "2_/; (qf’_.qz)z R (“zvg ) (18)

@ 2k /°° dz f(2) (19)

= e = —

I n [z - f,e“\m]
In writing the second line, the RG constraint that both D and R be fuactions of z only
[1.e. R =12 n? f(z)] have been explicitly inc..rporated.

Notice that no assumption about a mass gap has been made here. For this amplitude, the
appearance of a mass gap (beginning at 4 m2) is related to the introduction of quark masses.
For the glueball channel, however, where a similar representation holds, it is generally ex-
pected that there exists a mass gap even in the massless quark limit'®. In such a case the
corresponding D will have a Taylor series expansion in ¢2:

D(q*/u?,9%) = Y dug®)(gH)" (20)
w0
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This expansion is the complement to the perturbation series where the expansion is in pow-
ers of g2 with g2-dependent coefficients. Howevel, in contrast to that expansion which is
asympiotic at best, this expansion necessarily Las a finite radius of convergence (given by
the square of the glueball mass, or, in the case we have been considering, 4 m?2 if quark
masses are introduced).

Recuiring that D be a function of z only determines the full g>-dependence of the d,:

D(qz/uz,gz) = E dN., [qz/“zezx(g)]n 21)
=0
oo, 2 1 b2 */blz qz n
~ n/bg — e — - “
g ()T e

where 5., are numbers independent of ¢, 4® or g uad, in the second line, we have usea eq.
(17). The question that must now bc faced is how can this (exact) expression, which contains
explicit non-analytic pi~ces in g? - indeed, essential singularities - ever be cast into the form
of a perturbative expansion in g2, as in eq. (9), which naively treats D as if it were analytic
in g2 at g2 = 0 ? In order to begin to answer this question we need to digress = little into
some propertics of series expansions.

IV DIGRESSION ON SERIES EXPANSIONS

Consider the following series expansion

o (1"
f(z)-):( n,) as 2" (23)
w0

{ first want to invert this to obtain a formula for the a, in terms of f(z). The trick is to
make use of properties of the gamma-function'!” " (s), namely, that it has a string of simple
poles at s = —n with residue (—1)"/n! Thus, (23) can be expressed as a contour integral

da
f(z) = /,i',ﬁr“”""”" (24)

where a( s) is the analytic continuation of a, such that a( —n) = a, and C is the contour
shown in the fig. 4. Now, if a(s) has no singularities in the left-hand plane and the inte grand

11
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Fig. 4

Complex s-plane showing singularities of I’ (s) and
the contour C used in eq. (24). C can be de’ormed
tg L and » Mellin transforms profound to cotain eq.
(25)
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is sufficientlv convergent, C can be replaced by a line L parallel to the imaginary axis. The
resulting repesentation will be recognized as an inverse Mellin transform from which one
can read off the desired result:

a(s) = = " dz 2! f(z) (25)

An alternative form for a( s) that is sometimes useful can be obtained by analytically contin-
uing the integrand into the complex z—plane.

dz

a(e) =T (1 —a)/cz—;.(--z)"‘f(z) (26)

The contour C wraps around the cut defined along the positive real axis necessary to define
z*~' as a singl. - ;alued function. It can be opened up to pick up the singularities of f(z).
For example, if these only nccur on the negative real axis then (26) reads

a(s) ~I(1 —3) /;%:"'Imf(—z) (27)

Suppose the series (23) were divergent; define a new series g(z) from it by introducing
coefficients b, such that

(- -} _‘ L]
g(5) -E(n,) anbaz” (28)

m0

This new scries can always be made convergent by choosing the b, to fall sufficiently fast
for large n Using the Mellin transform technique described in (A) above together with its
convolution theorem leads to the following formula:

® du T
fio = [T Zg(w B3 (29)
_ ds z~°
where B(z1) = Lz—"—lm (30$)

i.e. 1/b(s) is the Mcllin transform of B(x). As before b( 1) is the analyiic continuation of
b such that b( --n) = b,.

13



The idea of summability is then the following: choose the b, to make the series for g( 2)
convergent; insert its sum into (29) which, if it exists, gives a well-defired represcatation for
f(z). The besi-known version of this is due to Borel!”: choose b, = 1/n! then B(s) =
1/r(1 — s) leading 10 B(z) = (1/z)e~"/*. This defines the Borel sum of f(z):

1 feo
- — —“/’
f(z) /; du g(u)e (31

Other choices for the b, are, of course, possible, however the Boiel technique is the one
that has received most attention. As an example of the Borel method consider the series
generated by a, = (n!)?; this is clearly divergent. However, g(z) = Y (—z)" can be
summed to give (1 + z)~' and so

©dye

fa) = [T (32)

This is supposed to be the true unique representation of f(z). From this point of view the
original divergent series simply arose from our "illegal” expansion of the integral as a power
series in z.

The question arises as to when this technique does, in fact, give a unique and consistent
representation of the function. There are, naturally, many important theorems and treatises
dealing with such questions; however, this is not the place toreview them. Roughly speaking,
the method works when all the integrals converge uniformly. Of particular importance is the
absence of singularities on the positive real u-axis. For example, if g, = (- 1)*(n!)? then
g(u) = (1 — z)~! and the series is no longer Borel summable. Typically this means that
undetermined essential singularities such as e~*/* cannot be excluded from f(z)

Suppose that f(z) has a power series expansion in some wedge of ana!yticity in che complex
plane 8 < m/2. Consider

N (_l)n .
f(x) = ) " ——auz®| = An(2) (33)

wa(

For the sorts of scries that we are interested in Ay(2) ~ Cyz¥*! so that Ry(z) /¥ -
oo when N — oo for z fixed indicating zero radius of convergence. On the other hand
Rn(z)/2¥ — 0 for N fixed and z -+ (. This is Poincaré's definition of an asymptotic

14



series. As shall be demonstrated below, a general feature of quantum field theories is that
Cn ~ cb¥*Ir (N + a) where a, b, and c are constants. I' is easy to confirm that Ry( 1)
minimizes when

N=N,=~1/bx-a (34)

and that
Run.(z) ~ c(2mbz) e/t (35)

This is a remarkable result which demonstrates the character of asymptotic series for it shows
that Ry(z) — O for z sufficiently small. Thus when N = N,, the series exponentially
approaches the correct value of the function f(z) for sufficiently small x even though
it diverges! If further terms are added to the partial sum one is driven further from
the correct result. Thus, if one believes that in QED the appropriate xpansion parameter is
a/w and that the series is asymptotic in Poincaré’s sense then it is not until 7/« terms that
one need be concemed! Furthermore one can approach within e~/ of the exact result!

V  LARGE n-BEHAVIOR

As explained in the Introduction the main thrust of this paper is to gain some possible in-
sight into the occurrence of large ~oefficients in the perturbation expansion. The question of
summability discussed ahove, though intimately related to this problem, will be discussed
elsewhere. The rest of the paper is therefore devoted to the question of the large n behaviour
of the coefficients a, (g2 /u?). We shall first review how this can be attacked using the "bare"
path integral representation. Unfortunately this leaves several questions unanswered, espe-
cially for gauge theories!'®, We therefore turn to the representation (19) which incorporates
q* -analyticity and renormalizability and therefore, implii itly, the complete g2 -dependence.
Furthermore, in contrast to the path integral it is a representation for the trulv physical am-
plitude.

With a generalization to the path integral in mind, consider functions f(z) which have the
following representaticn

f(z) = :}; /: due= AW/ (36)

For example, if A(u) = u? + y* then

f(z) = /“ dye (W ret) (37)
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which is the "zero-dimensional" limit of a Euclidean ¢* field theory with coupling strength
z. Notice that if this is naively expanded in powers of z, one obtains

2
F(2) ~ )'_j( 1)'5157'%1)-)-1 (38)

which is clearly divergent. Indeed it can be Borel-summed to reconstruct the original repre-
santation (37). Inserting (36) into the coefficient generating formula, eq. (25), gives

o(s) = _(I_‘_’)/ duets-hinAw (39)

Thus In A(u) generates the coefficients. Let us suppose, again with our eye on field
theory, that A(u) ~ u? when u — 0, then by continuing u into the complex plane, it is
possible to re-express (39) in the form

r(3—s)r(l —J)Cz,.-. _ﬂt_e(.-pcn(u)
cosma c2m

a(s) =

(40)

where the contour C wraps around the cut on the positive real axis necessary to define in u.
This expression is ripe for exploitation by the method of steepest descents. Saddle points
cccur when [In A(u))' = 0 1.e. A'(u) = 0. Notice that, ahhough A/(u) = 0 when
u = 0, this is not so for [ In A(u)]’; thus, even though u = 0 is a saddle point of the original
representation of f( z) and is the point about which perturbation theory is developed, it is not
a saddle point of the coefficient generating function, eq. (40). Typically [in A(u)]" > G at
the saddle point (ug) and we find that for s = —y, —» —o00

[F(1+m)]? [—A(uo) ]
(n+ 1) [27A"(u))]?

a(—n) mag,

(41)

provided 4(u,) < 0 which is generally valid for polynomial A(u). It is struightforward to
check that for the example (37), this formula agrees with eq. (38). Eq. (41) shows that the
effective expansion parameter s actually not =, but rather /A u,). Furthermore, note
that if A(u,) > O then, naively, a factor ( —1)*® is induced in (41) which would imply that
the senes is no longer Borel summable. We shall return to this situation below.
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The extension of the above analysis is straightforwardly generalizeable to a path integral
representation. The vacuum-vacuum amplitude for a scalar field theory with action functional
A[ @] is given by

Wi(g) = \/La [ Doensis (42)

where g is the coupling constant. This can be expanded in the usual Feynman graph pertur-
bation series as a power expansion in g. The coefficients can be determined, as above, using
eq. (25):

r(l —s)r(y—a
2 micos s

a(s) =

CZIM/D¢C(0-+)lnAI¢I (43)

Thus In A[¢] acts as the effective action for determining the a,.. As before the trivial
local minimum of A at ¢ = 0, though being the starting point for perturbation theory, does

not contribute to a(s). The saddle points (at ¢ = ¢,, say), satisfy the classical equations of
motion and have an action given by

Alg]l = ~ [d*zgf = ~87%/3 <0 (4)

The functional integral can be evaluated at the saddle point and an answer analogous to (41)
derived. Care tnust be taken in properly accounting for zero-modes etc. with the result that

an R Al T(n+ D] {-Ad o))~} (45)

Thus the expansion parameter is not g but rather (3g/8n%).

In the literature this formula was originally derived using eq. (27) for a(s)'"®. This
requires an immediate analytic continuation in g. Now for Re ¢ < 0, eq. (42) diverges
indicating that singularities occur only in the left-hand plane. To determine the nature of
these singularities, the path integral itself needs to be analytically continued in ¢. One finds
a cut beginning at ¢ = O extending along the negative Re ¢ axis. An evaluation of the
discontinuity across this cut gives a result in agreement with eq. (45). Deriving the result
this way makes a connection with Dyson's original argument since an imaginary part only
develops if there are other vacua that are not stable.

In attempting to extend this technique to non-abelian gauge theories such as QCD seri-
ous problems arise. First, there is the classic problem of maintaining gauge invariance for
physical quantities. Secondly, these theories lead to non-trivial saddle-points with positive
action. As already emphasized this precludes a straightforward application of summability.
On the other hand these additional minima of the action (typically referred to as instantons
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and the like) have a topological characterisitc associated with them. In that sense they give
rise to a more general expansion beyond ordinary perturbation theory in terms of topological
sectors, as represented in eq. (11). The problem is then to determine how much, if any, of the
instanton-like contributions feed back to what is usually thought of as ordinary perturbabion
theory. Because of problems such as these it has been difficult to apply these techniques
directly to the path integral representation.

The representation, eq. (19), incorporates both causality and renormalizability and, as such,
explicitly contains information that is not directly encoded in the path integral. In this sense it
is potentially more useful for our purposes since it contains an essential feature of perturbation
theory, absent in the path integral, namely renormalizability. In this section I shall therefore
attempt to exploit (19) to determine the large n behavior of the coefficients.

Let us first express the perturbative expansion of D in the form

2 ® (1) 2
D(Z—z.oz)‘*’x( )At.(ﬁ;)(az)" (46)

!
=0 n

The cocfficients that we are actually interested in are those occurring in the expansion of R
as in eq. (9). These can be derived from the A, via the formula:

. ™! 3 lmA,,.._ ﬁlmA,, .
o = (-4 wnb, [(n+l)!+b| w ] (4D

For large n only the first term need be kept since we anticipate that A, ~ (n!)*. In order to
avoid appurent essential singularities at the origin, arising from the renormalization group, it

is convenient to transform to the variable k = 1/g?. Using eqs. (26) and (19) the coefficients
in (46) can be obtained from

2 2 —(1+ 2
q @ [eodz dk (—k)-(1+0¢lK
A (s.#,) r(l —a)pz/; 7/(2)_/c21n.l2_q2/“2c”]‘{ (48)

with K givenby eq. (17). We are interested in the behavior of this expression when & — — 00,
As before, this can be estimated using a steepest descants technique. The structure of the
complex k-plane is evidently quite complicated as can he seen from fig. 5. There are three
distinct types of singularity: (i) the familiar cut on the positive real axis necessary to define
(- k) ~*~1; (ii) an infinite sequence of poles, (at k = ky, say) arising from the vanishing of
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Fig. 5

Complex k-plane showing the contour C used in eq.
(48) together with the singularity structure
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the denominator: ky /by + - - - ~In (g*z/u®) £ 27Ni(N =0 ,1---) and finally (iii)
cuts necessary to define potential logarithms in e2X; (e.g. keeping orly the first two terms in
(16} or (17), there is a cut at k = —by /b, as shown in fig. 5).

As one might guess, this complex structure gives rise to a plethore of saddle points in
the k-plane making an accurate estimate of (47) quite subtle. A more detailed discussion of
this will be given in a later paper; however, roughly speaking, these saddle points fall into
three categories that correspond to the three categories of singularity mentioned above. These
occur at (a) k =z by(s+ 1) + ba/by + 0(e™®) (b) 2K = In(2z/u?) £ 27N + 0(1/s);
(c) B(g)/g® = 0. Let us discuss each of these briefly. The first is the saddle point that
we are most interested in, for it dominates the large s behavior. Notice that it corresponds
to g* -+ 0-, as anticipated earlier. The second reflect the poles at k = ky in (ii) above.
They generate the typical (In ¢?/u?)™ + - - - dependence of the coefficients familiar from
asymptotic freedom. Since we want to compare with ref. 1 where g2 = u? these saddle
points are presumably not of interest here. Finally, there can be saddle points arising from
other possible fixed points of 8(g). Notice that the usual "trivial” fixed point at g2 = 0 (about
which perturbation theory is actually generated) is excluded from this. This is analogous to
the situation we encountered abuve when dealing with the path integral formulation where
the trivial saddle point at A = 0 does not explicitly contribute to the estimate. On the other
hand, the "pseudo” fixed point at k = —}; /b, generated by keeping only the first two terms,
must be included. In QCD the signs of b, and b, are such that this occurs for Re k < 0 (or
Re g2 < 0). Had the sign of b; /b, been different as in ¢* theory (but not in QED!) then
this cut migrates to the positive real axis overlapping the (—k)~'~* cui. In such a case it is
not obvious that the coefficients can be determined and it is reasonable to speculate :hat this
is related to the well-known claim that ¢* is in fact a trivial theory.

Returning to egs. (47) and (48) we can estimate the large n-oehavior of @, by keeping
only the single saddle- point at k & b; (s + 1). In that case we find, assuming |s| > b2 /by,
that

B, ~ — (47 eby) ™! r'(;) (49)

Thus
°£" n —dnlebn (50)
R —-:—(11—2,/3N,)n (51)

indicating rapid growth of the coefficients with n. ([i2 these expressions e is the base of
natural logarithms, not to be confused with the electronic charge!) Perhaps the most strik-
ing aspect of this result is that the effective expansion parameter is not o/ but rather
a.rs = 4n2eb a/m. Repeating the analysis of Section I'V C for the case here we find that the
remainder R, minimizes whenn ~ 1 + a,‘,‘, +2+aeff)' ~ 45 taking a itself to be
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~ 0.15]. This is remarkable for it says that an accurate result can be obtaine:' by keeping
only these first few (4-5) terms. Indeed, an estimate of the error introduced by this process
gives a contribution of only ~ 103! This is all very encouraging; however, how accurately
can we trust these estimates if n is so small? To get some idea, if we put n=2 in eq. (50) then
33 /a2 ~ 11. This is indeed a relatively large number, although not big enough to account
for the result of ref. 1. Furthermore, our asymptotic formula requires that succeeding terms
alternate in sign, a characteristic which does not show up in 1. On the other hand the sign
of @, agrees with our prediction, so the "problem" resides in @2. One certainly wouid not
expect our analysis to be valid for this coefficient so there is no serious contradiction. The
problem is, of course, that even thougk corrections to (49) coming from expanding around ths
saddle point can be expected to be quite small, there are many other sub-asymptotic saddle
points whose contribution may well be comparable to the leading contribution expressed 1 -
eq. (49). A more accurate analysis is therefore required tc actually establish a firm sstimate
of @3, for example, and to confirm the calculated result. Such an enterprise is currently being
undertaken. It is worth noting that eq. (49) gives @3 ~~ 12, a factor 2 7 smaller than the
calculated number of ref. 1.

It should also be pointed out that these leading estimates are both gauge and scheme-
invariant, as one might expect. Ultimately one would like to be able to confidently extract
a, from the data (if it is sufficiently accurate!) which means that we need to know eizher
where to stop the series or how to resum it. Our analysis indicates that stopping atn ~ 4 is
sufficient. In that case one could simply add the estimate to the already calculated numbers.
Similarly one can resum the series beyond these terme using a variant of the Borel technique
discussed in the previous Section. In any case it is clear that some consistent procedure or
algorithm must eventually be invoked to control the divergence problem and the consequent
large coefficients. In this talk I have attempted to show how this problem cai. be solved in

principle and suggested some practical possibilities. A later paper will present details and
pursue the solution.
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